
N90-27337

A DA AS

FOR

AN IMPLEMENTATION LANGUAGE

KNOWLEDGE BASED SYSTEMS

Daniel Rochowiak
Research Scientist

Johnson Research Center

University of Alabama in Huntsville
Huntsville, AL 35899

ABSTRACT

Debates about the selection of programming languages often produce cultural
collisions that are not easily resolved. This is especially true in the case of Ada and
knowledge based programming. The construction of programming tools provides a
desirable alternative for resolving the conflict.

INTRODUCTION

If one wants to generate a debate at a party for persons connected with computer
programming, just ask "What is the best programming language?" The result is often an
outpouring of praise, curses, hyperbole, and technical detail that will either quicken the pulse or
induce tranquil repose. Programming languages are at times treated as matters of religious fervor,
and at other times treated as mere notational convention. All of this would be fine were it not for

the demands for "good" software and the increasing size, complexity and seriousness of software
programming projects. To be sure software is more than the code for a program. Software, in the
sense includes all of the information that is: (1) structured with logical and functional properties,
(2) created and maintained in various representations during its life-cycle, and (3) tailored for
machine processing. This information in large projects is often used, developed, and maintained
by many different persons who may not overlap in their roles as users, developers, and
maintainers. In order to develop good software, one must explicitly determine user needs and
constraints, design the software in light of these and in light of the needs and constraints of the
implementers and maintainers, implement and test the source code, and provide supporting
documentation. These dimensions and constraints on producing software can be looked at as
aspects of different moments in the software production process.

The programming languages LISP and Ada can each legitimately claim a special
competence. In the case of LISP, it is symbolic processing, and in Ada, uniformity and
maintainability. In making a decision about a programming language, the programming language
and its environment cannot be meaningfully separated. Whether one examines LISP or Ada, it is

clear that the advocates of these languages are not considering the languages in isolation. The
combination of programming environment and programming language is intinaately connected
with the programming paradigm that can be used in the construction of the program. A
programming paradigm may be thought of as the style or manner in which a program is created.
Within one paradigm there may be many particular templates, but there is a sense in which each
of these reduces back to some primitive template. Alternatively, one may view the paradigm as a
primitive object from which the specific template inherits structures and properties. Under either

sort of interpretation, it should be clear that a programming paradigm acts as a vehicle through
which a programmer designs and builds specific programs.

589

Certainly another way to generate debate is to ask, "What is the best representation of
knowledge?" or "What is the best way to manipulate knowledge?" The list of answers will grow
rapidly: logic, rules, frames, scripts, objects, trees, nets, inferences, associations, statistical

inferencing, case based reasoning, analogy, and so on. All of these styles and techniques have
valued uses. All have their strengths and weaknesses. Unless a person was very lucky, no
consensus would be achieved at the party.

Behind both the questions about programming languages and the questions about knowledge is a
common social structure. Programming and the construction of knowledge based systems occur
in cultures. These cultures are the repository for tradition, tacit rules of procedure, and tacit rules
of appraisal. A person's training is the way in which they are enculturated. Someone who is

trained on a certain hardware, in a certain language, and in a certain style will carry the culture
generated through that training onto his or her new works. As persons with their cultures collide
differences of opinion, and difficulties in adjusting to the demands of another are sure to be

produced. This collision of cultures is a central element of the issues surrounding the debates
about knowledge based programming and Ada.

PARADIGMS AND CULTURES

Typically a culture has a core paradigm or set of paradigms that capture the core of the

culture. The paradigms act as cognitive templates that are filled in when either trying to solve a
problem or develop an object.

In programming there is an interaction between what may be considered a programming
paradigm and a programming language. Stroustrup (8) sets out the relation between a
programming paradigm and a programming language rather neatly.

A language is said to support a style of programming if it provides facilities that

make it convenient (reasonably easy, safe, and efficient) to use that style
Support for a paradigm comes not only in the obvious form of language facilities

that allow direct use of the paradigm, but also in subtle forms of compile-time
and/or run-time checks against unintended deviations from the paradigm... Extra-
linguistic facilities such as standard libraries and programming environments can
also provide significant support for a paradigm.

The problem of selecting a paradigm is both art and science. It is art insofar as it requires a
subtle understanding of the programming craft, and is science insofar as a set of decision rules

can be established for the paradigm. The four typical paradigms are: procedural, data hiding,
abstract data type, and the object-oriented Paradigm.

In examining Ada and LISP the idea of the programming paradigm can be usefully
extended to the paradigmatic way in which programming languages and their environments are

used. The question is whether one language offers tools that make it best suited to a particular
task. Although there is a formal sense in which all sufficiently rich languages are equivalent, this
equivalence is only logical or formal. Although any of the paradigms can be accomplished in
either LISP or Ada, this does not mean that it is either easy or reasonable to use any of the
mixtures of paradigm and language that are possible. Since LISP has been the chief language of
artificial intelligence research, it is reasonable to investigate whether Ada can support the
constructs of LISP. In this way the issue concerns whether Ada can implement the LISP
paradigm.

Schwartz and Melliar-Smith (7) analyzed the Ada specification to determine its potential as
an AI research language. Their conclusion is that Ada, as defined in the Preliminary Standard,

590

would not be suitable as a "mainstream research language." They proposed, however, that with
some extensions it is plausible that a substantial portion of AI "algorithms" could be translated
into Ada. This translation would not be easy, since it would be more of a "reimplementation" of
the program, but the "complex heuristic algorithms that provide the artificial intelligence" could
be retained.

Schwartz and Melliar-Smith's claim of Ada's unsuitability is fundamentally based on the
determination to enforce a particular programming paradigm. One goal that was set forth in both
the Ironman and Steelman Requirements, is to create "an environment encouraging good
programming practices." Ada imposes a style of programming that is the result of many years of
research on programming methodology. Ada is intended to impose a very disciplined style of
programming that assists those who are developing large, complex projects that require teams of
programmers. Furthermore, Ada is said to be 'readable and understandable rather than writeable'
so as to minimize the cost of program maintenance. Thus, Ada's mandated programming style is
beneficial for the targeted Ada community - a production community, especially a community
that produces real-time embedded systems. In general, AI work does not occur in a production
community, but a research and development community. This difference in orientation is a factor
in making Ada unsuitable as a general AI research language. The constraints of production
prevent the AI programmer from using the most natural method of expression for whatever
system is being developed. The LISP programmer places greater value on code that is more
easily writeable than readable. However, two things should be remembered. First, the readability
of any code is a function of the enculturation of the reader. Second, the readability of the code is

a function of the tools available with which to read it. This latter point is important when one
considers LISP on a LISP machine. Within that environment the code may become very readable

through the tools that are available for reading it.

Schwartz and Melliar-Smith contend that the utility of Ada for AI programs is confined to
the reimplementation. This operation would be carded out by software teams by following the
algorithms of an original program, but not necessarily its detailed code. Extensions to Ada are
needed, however, if such reimplementation is to be carded out while preserving Ada's structure
and modularity.

A typical AI task for a knowledge based system in LISP is to generate solutions to
problems that have a very large number of alternatives. To attempt to solve such a problem by
exhaustive search or "best fit" is not feasible even with a supercomputer. A heuristic based guess
is used to prune branches from the decision tree so that the problem becomes tractable. In some
"classic" systems, a breadth-first or depth-first search is used to consider candidate solutions.
When it becomes apparent that an incorrect decision has been made, then the search resumes at
the junction where that decision was made. Use of heuristics allows for systems to "learn" from
their mistakes and refine their search techniques as more is "learned" about the problem domain.
Several features of AI programs stand out. First, extensive use is made of the list structure and

the processing of lists. Second, procedures are often used as values that can be stored in a data
structure. This allows for the construction of a generic framework for the parameterized
transformation of a given type of structure. An example of this would be the construction of a
system to perform an arbitrary function on a tree or graph structure. If the procedures are values
of a procedural data type, then the procedures could be passed as parameters to perform the
desired manipulation of data. Third, LISP provides for a similar representation of both data and
programs that allows for the creation of functional abstractions "on the fly." These abstractions,
expressed by Lambda calculus list expressions, can be passed as parameters to other abstractions.
Fourth, as each function or expression is defined, it becomes part of the system. Thus, the
application program can examine its run-time environment, a fact which makes the program
inseparable from its environment. Finally, the ability to use procedures as storable objects is
essential to many AI programs. One use for this ability is as a method to express knowledge
about a particular domain. Frequently, several different knowledge representations will be used

591

in one system. The particular representation used would depend on the availability of
information.

PACKAGES FOR ADA

Much of the success of LISP as an AI language can be attributed to fact that it is extensible.

It is possible, for instance, to construct rather easily interpreters for other high-level languages
using LISP. This ability is facilitated by the manner in which LISP programs are represented: as
lists. Ada, too is extensible. (2) However, Ada is more limited in its extension capabilities, with
packages, generic procedures and tasks being all of the extension methods. Whether or not this
extensibility is to limited for the needs of reimplementing AI programs remains to be seen. Ada

provides data abstraction facilities that allow one to create extensions to the language by the
defining of new data types and the operators that can be used to manipulate them. Through the
use of a package containing a data abstraction, a programmer can write code as if the facilities

provided by the package were provided by Ada. Thus the addition of packages may provide a
way in which the typical features of an AI program written in LISP can be reimplemented in
Ada. Such a package may, for example, supply the tools needed to handle lists, procedures, and
garbage collection.

List processing is an important feature of AI research languages. Whereas Ada does
provide the features needed to implement list processing, its garbage collection facilities leave
much to be desired. No special considerations have been made for list processing, and
consequently, the efficiency of such will likely be minimal. To implement lists in Ada, one could
create a data structure as follows. Each list cell would be a record that has two list pointers: CAR
and CDR. A list pointer would then be a record that has only a variant part. The discriminant of
this variant part would have two possible values: ATOM and LIST. This would indicate whether
the list pointer component is a list reference or an atom reference. There would need to be a

LIST_REFERENCE and ATOM_REFERENCE access types for the dynamically allocated list
cells and atom cells.

Although procedural variables cannot be readily added to Ada, it is conceivable that the

ability to pass procedures as parameters could be added. The effect of the instruction part of a
procedural value can be simulated through the use of a generic procedure. This method would
avoid using a CASE statement as would be necessary if the indexing scheme were used. Generic
procedures used in this fashion would carry the name of the "passed" procedure but would not
have the closure or environment.

As most AI programs "run," they pursue a number of possible alternative paths of action.
This attempt to find the best possible path usually succeeds in allocating a great deal of memory.
Since the memory objects have a lifetime that is dependent on the duration of the utility of the
data, and not the flow of control of the program, these objects must be allocated in a global heap.
By using a heap, storage can remain at least as long as it is referenced anywhere else in the
system. Consider a typical embedded system application. Here, the data that must have space in

the heap is minimal. Thus, reclamation of heap space is not important, and in some cases, heap
space is not reclaimed at all. This is yet another design philosophy contradiction, between Ada

and AI languages. AI languages are designed with the philosophy that "no amount of initial heap
allocation will be sufficient for the continued operation of many AI programs." It is not a
question of if all of the heap space will become allocated, rather is is a question of when it will

happen. Obviously, some strategy must be used to reclaim this storage space. The language
specification for Ada does not preclude garbage collection capabilities, nor does it indicate these
will be included. There is a mechanism, FOR-USE, which indicates the maximum number of

objects of an access type that may be generated. Since the compiler knows the maximum size in

advance, the necessary space can be allocated. This provides a sort of heap-type allocation with

592

automatic reclamation for objects that have a limited scope of use. Unfortunately, this method
causes allocation/deallocation to be dependent on control flow or block entry and exit.

PATTERNS

Obviously, not everyone agrees with Schwartz and Melliar-Smith on Ada's place in AI.

Larry Reeker, John Kreuter, and Kenneth Wauchope of Tulane University have done much work
on pattern matching in Ada. In answer to the question of "will Artificial Intelligence be done in
Ada?" they answer that "anything can be done in Ada," and attempt to show how Ada, when
appropriately used, can facilitate the programming of Artificial Intelligence applications. (6)

Reeker has chosen to focus on a pattern-directed because "pattern-directed facilities

provide the most effective means for creating complex programs for non-numerical
applications." Further support for pattern matching can be found in the work of Warren, Pereira
and Pereira. (9) They contend that pattern matching "is the preferable method for specifying
operations on structured data, both from the user's and the implementer's point of view."

Reeker envisions the addition of AI oriented features to Ada through the use of packages.
The list of features that are candidates for incorporation into Ada include:

• String definition and manipulation facilities more flexible than those built into Ada.

• List processing functions
• Pattern definition and matching functions for strings and lists

• A means of manipulating lists returned by the pattern matching functions

Ada's concurrency paradigms lead to a number of possible methods for pattern matching.
One such method would be to use tasks as "coroutines" to match patterns. There are areas in AI

which have made use of "quasi-parallel" processes previously. True parallel tasks executing on a
true multiprocessor system would surely improve on those systems.

In his section of their paper, Kenneth Wauchope presents an Ada language implementation

of a pattern-directed list processing facility. A set of SNOBOL-4 like primitives are used to
construct lists that are equivalent to arbitrarily complex LISP-like data structures. Wauchope
advocates the addition of packages to make AI feasible in Ada. In this paper he describes the
operation of a package which provides basic list creation and manipulation functions similar to
those in LISP. Wauchope then presents several applications of these new features, including:
parsing a context free grammar and symbolic differentiation.

Krueter presents several algorithms for pattern matching in Ada The first of these is the
recursive descent parsing method which is a common way to implement the backtracking
strategy. Backtracking is based on the intuitive approach of trying every possibility for each
pattern element. This generates every possible parse of the string but is rather costly in terms of
time.

One particularly interesting possibility arises with the use of Ada for coding such
algorithms. Since Ada allows concurrent tasks, the backtracking aspects of the algorithm could
be achieved through the use of tasks that behave as coroutines. A task would start by examining
each bead in the first set of alternatives. A new task is forked for each successful match. This

new tasks will then examine the remainder of the string and the remaining sets of alternatives.
After all alternatives have been examined, the task will pass back the matching substrings, or null
in the case of no match, and terminate. Each successive parent tasks will then add its substring to

the beginning of each tree on the list which has been passed to it. Then, this list is passed back,
and so forth, until the master task is reached.

593

Combinatorially implosive algorithms (CIA's) are a class of parallel algorithms that
employ two or more algorithms running concurrently such that they will solve a problem more
quickly than one would by itself. Brintsenhoff, Christensen, Mangan, and Greco demonstrate a
CIA coded in Ada in their paper, "The Use of Ada Concurrent Processing Features in an
Implementation of Parallel Tree Searching Algorithms." (3) This study is interesting because the
authors had access to a multiprocessor with run-time support for concurrent tasking. Their
findings show the speed advantages of parallel algorithms written in Ada. Although the results
were highly data dependent, the running of two algorithms concurrently proved to be more
efficient than just one and thus proved the utility of CIA's in Ada. If such CIA's could be

developed for pattern matching, it is reasonable to expect that pattern driven AI applications
would prove to be very efficient in Ada.

OPTIONS

The two previous sections have indicated two ways in which the confrontation of Ada and
AI might proceed. In the first way the differences of the two cultures are acknowledged and an
effort is made through the addition of appropriate packages to provide the tools for a
reimplementation of an AI program. The second option acknowledges the fact that in a
sufficiently complete language it is possible to implement the idea of a program directly. Each
approach has certain advantages and disadvantages. In the first approach the program does not
have to be completely rethought and redesigned. This is a disadvantage of the second option
since the ideas for the program have to implemented from scratch. In the second approach there
are potential advantages to be gained by using the strengths of Ada. This is the disadvantage of
the first option. The addition of the packages may in effect provide for a LISP interpreter that
circumvents the natural strengths of Ada.

One way in which a decision between these options might be facilitated is by using the
resources of software engineering. Fairley (4), for example, defines software engineering as the
"technological discipline concerned with the systematic production and maintenance of software
products that are developed and modified on time and within cost estimates," and claims that
software engineering is a "new technological discipline distinct from, but based on the
foundations of, computer science, management science, economics, communication skills, and

the engineering approach to problem solving." Boehm (1) identifies seven basic principles in
software engineering. These are:

1. Manage using a phased life-cycle plan,
2. Perform continuous validation,

3. Maintain disciplined product control,
4. Use modern programming practices,
5. Maintain clear accountability for results,
6. Use better and fewer people,
7. Maintain a commitment to improve the process.

Of these principles one requires special attention in this context, injunction to use modem
programming practices.

Programming paradigms are at the root of modern programming practices. As Boehm (1)
notes, "The use of modern programming practices (MPP), including top-down structured
programming (TDSP) and other practices such as information hiding, helps to get a good deal
more visibility into the software development process, contributes greatly to getting errors out

early, produces understandable and maintainable code, and makes many other software jobs
easier, like integration and testing." At issue, of course, is what counts as a modem programming
practice. Interpreting this principle is complicated by the facts that modern programming
practices are not fixed, that such practices are the outgrowths of programming paradigms, and

594

thattheparadigmsareresponsesto thepracticalneedsof computersoftwaredevelopersandthe
intellectualdemandsof computerscientists.

Thus,Boehm'sprinciple thatmodemprogrammingpracticesoughtto beusedis a bit odd.
What it might really mean,however,is not that anymodernprogrammingpracticesshouldbe
used,but thatthemodernprogrammingpracticesfor imperative,conventional languages that are
used for large software projects and can be handled within the current discipline of software
engineering should be used. In this sense the modem programming practices are those geared to
the community and culture of production. Neither LISP nor object-oriented programming can
satisfy those demands. However, Ada comes near to being the ideal language from the point of
view of software engineering with conventional languages. This points out the difficulty in
generating a set of principles to guide software engineering. The analogy of software engineering
to the rest of the engineering field (10) begins to break as one attends to the nonphysical
character of software. For example, when building a bridge or a pipeline, the standard elements
of the construction remain static. Bridges will have beams and pipelines will have pipes. The
materials and techniques may change, but the basic elements remain. Unconfined by such
physical characteristics, the elements of software construction can change, subroutines,
subprograms, libraries, modules, package, units, function, objects and many other elements are
available to the software programmer, and new as yet unthought of constructs might be added.
All of this adds to the complexity of choosing and using modern programming practices, and

points to the important role of the software manager even within the software engineering
discipline.

The decision as two which of the two options should be pursued any not therefore be
decidable on the grounds of software engineering alone. If the other principles that Boehm
isolates are essentially management principles then it is fair to assume that they can be satisfied
with any language and any programming paradigm. In this sense they are transculturai. However,
the injunction to use modern programming practices is what the collision of cultures is about.
What is a modem programming practice? Each culture will defend itself as being the exemplar of
modern programming practice. Given the existence of the colliding cultures, it does not appear
that the principles of software engineering will be able to generate a clear choice.

Another way in which the choice might be made is to focus on a technological solution. In
particular the development of software tools that allow for program development in a neutral
environment, but can generate code in a target language. The use of automated tools to manage
the software coding process, including the generation of source code in a target language, raises
another interesting issue, however. If the tools are good tools and if the code they generate is
good code, then what is the programmer doing? In a primary sense he or she is running the tool;
in a secondary sense he or she is programming in some language. There is a sense in which if the
tools are very well done, the "programmer" need not even know the language in which he or she

is programming, and, indeed, need not even know in what language the code is being generated.
As Howden (5) has noted:

The manufacture of software is perhaps one of the most logically complicated
tasks. The intellectual depth of software systems development coupled with the
lack of physical restrictions imposed by properties of the product make software
manufacturing intriguing in its possibilities for highly automated, sophisticated
manufacturing environments. Research has begun, on environments containing
their own concept models of general programming knowledge... It has been
speculated that in the future software engineers will be able to describe
application programs to a system capable of automatically generating

specifications and code.

595

An intriguing possibility! The programmer is no longer a crafter of code, but an expert user
of a tool. The connection between the programming language and the programmer is, in a sense,
severed. The programmer with such tools may, therefore, function at a higher, more natural level
of abstraction without needing to attend to the syntactic complexities of the language in which
the application is finally coded. This is not, however, surprising. It represents simply another
moment in the evolution toward higher level languages. Rather than a traditional higher level
language being used with a compiler to generate the low level instructions to the processor, a
new generation of tools may operate at an even higher level and a translator may then convert the

tool's specifications into a higher level language which in turn may be compiled.

If this technological path is found desirable, then it suggests that the first option, the
addition of packages and reimplementation of code, is on the right track. Further it suggests that
the second options benefits might be incorporated into the tool. If for example the target
hardware is a multiprocessor system, then a tool should be able to guide the tool user in creating
code appropriate to the hardware. The creation of such tools is not, however, to thought of as
revolutionary. Rather the emergence of such is another evolutionary step in generating higher
level software facilities for programming more complicated hardware.

SPECULATION

It is clear, for example, that processors have improved greatly over the past two decades.
Increased speed, increased word size, augmented capabilities, decreased power consumption, and
decreased cost are readily apparent. All of these factors combine to allow those who design and
build languages and environments to implement more easily and effectively ideas and constructs
which with less capable processors would remain dream and desire. One need only to recall what
it was like to run LISP on a PDP-11 under RSTS and look at a Symbolics or Texas Instruments
LISP machine to recognize the difference. Similarly, C in its own UNIX environment has come

to be recognized as a powerful system, and has led to the evolution and development of the
computer workstation. The future holds even more promise. Even as physical limitations begin to
affect the development of better processors, new architectures begin to evolve. Multiprocessor
machines, parallel processor machines, and other objects of wonder and splendor open new
vistas to the language crafter. Although languages like LISP and C will probably move into these
new environments, their form and function will probably be much different. Equally probable is
that new languages will emerge. In any case, one point is clear. Languages are not static.
Language development responds to the state of the processor art. As long as processor
development continues, it is reasonable to expect programming languages to develop.

It should also be clear that programming paradigms change over time. The changes of
paradigm reflect both the intellectual development of computer programming and the ability of
the language crafters to build support for a paradigm into a language. BASIC was a wonderful
language. It was criticized for not supporting a structured programming paradigm. New BASIC
arose in response to that criticism. Classic LISP did not support object-oriented programming.
LISP with FLAVORS is a virtually seamless environment in which such programming is
supported and encouraged. C did not support the object-oriented paradigm; C++ is a response as
is Objective C. If it were not for the government's involvement with Ada, one might well think
that OO-Ada (Object-Oriented" Ada) might soon appear. There is, of course, no reason to think
that the story ends with the object-oriented paradigm. New paradigms, perhaps tailored to
particular classes of problems, may well arise. As they do, old languages may evolve to support
them, and new languages may arise to enforce them in much the way that PASCAL and
MODULA-2 enforce structured programming, SMALLTALK enforces object-oriented
programming, and Ada enforces some software engineering practices.

Perhaps the most dramatic changes of language will occur with the improvement and

development of programming environments and tools. It is often the environment that captures

596

the programmer. The facilities of the LISP and C environments allow the programmer to
concentrate on the task at hand, and quickly and efficiently produce the needed code. This is
especially true of a LISP environment on a LISP machine. The programmer can build his own
tools and tailor the environment to his or her needs and preferences. More importantly, the
environment and machine function in harmony to allow the programmer to build new languages
in which problems can be solved. By allowing a measure of abstraction, generality and efficiency
can be gained. All of these things taken together point out that the developmental environment is
an important factor in selecting a languages.

As programming tools and aids evolve, the direct contact with the programming language
may begin to disappear. Such tools may allow the programmer to either break the programming
task down into parts that are sufficiently small and standard that existing libraries of routines can
be employed, or may allow the programmer to build the program specifications in such a way
that a translator will be able to translate the specification into the target language. Both
approaches currently have their problems. In the former the programmer is left at some point to
grapple with the language itself, and in the latter the programmer might find the translated code
for the target language indecipherable. Although these are serious problems, they may not be
insurmountable. If they can be overcome, the contact of the programmer with the programming
language will be stretched thinner and thinner.

The continued improvement of programming tools and environments, may lead the
manager to base his or her decision on which programming language to use on the presence or
absence of certain features in the tools and environments more than on the characteristics of the

languages. The decision, of course, is still affected by external factors. Ada will be used on the
Space Station. However, much might be learned by examining the environments and tools for
other languages such as LISP and C in an effort to build better tools for Ada. After all, given that
Ada is a sufficiently universal language, it can be made to look like other languages.

CONCLUSION

It is difficult if not impossible to directly solve the cultural collisions that are bound to
occur in the interaction of programming languages, and paradigms. Those cultural collisions will
not be resolved by attempting to enforce a uniform programming language and culture. An
alternative, however, is to build tools that remove the programmer from direct contact with the
programming language. This removal can allow the tool user to overcome the cultural problems,
while still allowing the production of code in a desired language. If and when such tools become
available, the questions with which this essay started will be displaced with the question, "What
can your tool do?"

597

ACKNOWLEDGEMENTS

Thisresearchhasbeenpartially fundedunderNAS8-36955(MarshallSpaceFlight Center)
D.O. 34"Applicationsof Artificial Intelligenceto SpaceStation."

REFERENCES

1.BOEHM, B.W. "Seven Basic Principles of Software Engineering," The Journal of Systems and
Software 3, (1983), pp. 3-24.

2. BOOCH, G. Software Components with Ada: Structures, Tools, and Subsystems. The

Benjamin/Cummings Publishing Company, Inc., Menlo Park, California, 1987.

3. Brintsenhoff, Alton; Christensen, Greco, Joe; Steve; Mangan, John. "The Use of Ada
Concurrent Processing Features in an Implementation of Parallel Tree Searching
Algorithms. Proceedings of the Third Annual Conference on Artificial Intelligence and
Ada. George Mason University, October, 1987.

4. FAIRLEY, R.E. Software Engineering Concepts. McGraw-Hill Book Company, New York,
1985.

5. HOWDEN, W.E. "Contemporary Software Development Environments," Communications of
the ACM, 25, 5 (1982), pp. 318-329.

6. REEKER, LARRY H.; KREUTER, JOHN; WAUCHOPE, KENNETH. "Artificial Intelligence:
Pattern-Directed Processing." Final Report AFHRL-TR-85-12 Air Force Human Resources
Laboratory, Lowry Air Force Base, Colorado. May 1985.

7. SCHWARTZ, RICHARD L AND MELLIAR-SMITH, P.M. "On the Suitability of Ada for Artificial

Intelligence Applications." Final Report for Defence Advanced Research Projects Agency
Contract DAAG29-79-C-0216. July 1980.

8. STROUSTRUP, B. "What is 'Object-Oriented Programming'?," ECOOP '87: European
Conference on Object-Oriented Programming, Paris, France, June 15-17, 1987,
Proceedings. [Brzivin, J., P. Cointe, J.-M. Hullot, and H. Lieberman (Eds.)]. Lecture

Notes in Computer Science (276), Goos, G. and J. Hartmanis (Eds.), Springer-Verlag,
Berlin, 1987.

9. WARREN, D. H. D.; PEREIRA, L. M.; PEREIRA, F. "PROLOG - the language and its
implementation compared with LISP." Proceedings of the ACM Symposium on Artificial
Intelligence and Programming Languages, Rochester, New York, pp 109-115. 1977.

10. ZELKOWITZ, M.V., A.C. SHAW, and J.D. GANNON. Principles of Software Engineering and
Design. Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

598

